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Abstract 

It is customary t o  time share or commutate the return data l ink  

from spacecraft. This means t h a t  the data transmission is periodically 

interrupted. Because of the dual rate, a beat phenomenon appears 

between the two periods.which resu l t s  i n  the generation of a double 

inf in i ty  of switching tones. 

conditions results in  violation of the fast r a t e  N y q u i s t  l i m i t  with the 

consequent folding of the spectral  density distribution function of the 

data t o  both higher and lower frequencies unless the presample f i l t e r  

bandwidth is determined by the commutation frequency. 

domain, the consequence i s  t o  introduce rect i f ied components of the 

spectrum at  zero frequency. This is  the companion folding t o  that 

occurring in  spin modulation especially i n  a turbulent or  highly radi- 

a t  ive hydromagnetic medium 

Sampling of time ser ies  data under these 

In the time 

These conditions are applied t o  a hypothetical magnetometer experi- 

ment and it is  shown tha t ,  depending upon the frequency content, the 

data can be in t r ins ica l ly  aliased a t  the commutation switching rate of 

the telemetry system and, further, second order aliased in  the data 

reduction sampling procedure. The presence of the doubly aliased time 

ser ies  fo r  each of the magnetic f ield components can lead t o  potentially 

serious errors depending upon the form of the spectral  amplitude func- 

t ions which, in  turn, are unspecifiable i f  folded. 

1. INTRODUCTION 

It is common practice t o  time share telemetry among spacecraft 

experiments; that  is, each experiment in  turn occupies the en t i re  
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transmission l i n k  f o r  a fraction of the total. time available. In t h i s  

process, called multirate sampling, the instantaneous sampling r a t e  is 

l ike ly  t o  be high compared t o  the rate of commutation. The importance 

of correctly understanding the multirate problem arises from the 

band limited t o  the  frequency domain w ,< wo, where wo is  some cut- 

o f f ,  i s  completely specified by periodic sampling at intervals of 

fi/wo, except for  harmonic terms having zeros at  the sarqpling points 
ry, 

[Bracewell, 1-96?]. Increasing the sampling interval $ime causes the 

spectral  orders t o  overlap so that higher frequenciee, defined by 

appear within the passband. 

woJ 
1 This is called alias and for  periodic 

sampling, which does not observe the Nyquist cr i ter ion,  resu l t s  i n  the 

frequency shift ing of the spectral  terms. 

In the singly periodic case, folding t o  de (zero frequency) rarely 

is experienced except for  extreme violations of the sampling theorem. 

However, for  multirate sampling, it is easy t o  show that folding t o  dc 

can occur commonly. In general, spectral  folding under the conditions 

of multirate sampling is  characterized by both upward and downward fre- 

quency folding for  systems which are low pass f i l t e red .  When folding 

extends t o  zero frequency the  effect  i s  demodulation; nonzero spectral  

components are  shifted t o  the zero frequency axis. 

In an ea r l i e r  paper [Sonett, 19651 the m u l t i r a t e  problem was 

explored in  a general way including when the natural  spectrum of fre- 

quencies in  the data were contained i n  the neighborhood of the spin 

% t r i c t l y  speaking, upward folding in  the multirate case can also 

take place as i s  seen by considering the  case discussed l a t e r .  
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r a t e  of the s a t e l l i t e .  

essent ia l ly  the same effect  when spectral  components a re  folded t o  zero 

frequency, i .e.,  vector additions t o  the dc value of the q t a  are 

From the standpoint of folding both cause 

introduced. 

The process of sampling can be coded in a number of ways. It is 

even possible t o  construct a sampling sequence which is  multiply peri- 

odic and recover data where the Nyquist l imit  corresponds t o  the aver- 

age sampling interval.  To do t h i s  requires that  very special  presample 

f i l t e r s  be applied t o  the data. Bracewell [1965] points out t ha t  in 

the l imi t  where pronounced multiple periods are observed, sampling 

can be done by taking the function value together with n derivatives 

a t  widely separated points [cf.  Linden, 19591. However, th i s  procedure 

has no apparent advantages i n  the design of a sampling switch system,’ 

and there are disadvantages in  the presence of noise which may make 

such sampling unattractive. 

theories t o  assume a stationary spectrum. 

It is  also fundamental t o  most sampling 

This is an important limita- 

t ion when attempting t o  expand bandwidth by the use of pseudonoise 

codes for  the addressing of a switching matrix. For a b i ra te  switch 

where two 6 function switch sequences a re  interlaced, Bracewell 

[1965] shows how data can be recovered a t  the mean switching rate i n  

accordance w i t h  the  N y q u i s t  cri terion, provided the presample f i l t e r  

has a weighting function of the general form 

sin 23rt - [n  cot(ax)]t  (s i Iy t .J .  
23rt 

where a is  the sample pulse interval. 
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To compute specific alias errors  from data, the phase content 

must be preserved so that the form of the spectral  function cannot be 

stated in  terms of the power but m u s t  be given as a spectral  density 

dis t r ibut ion i n  complex amplitude. If the Fourier coefficients are 

completely specified, then it is possible t o  compute the properties 

of the t i m e  function. We shall be especially concerned w i t h  the 

time function in  the neighborhood of zero frequency since that is the 

measure of s t a t i c  f i e ld  components. The basic l imitations in estab- 

l ishing a meaningful measure of errors  are due t o  the i r revers ib i l i ty  

of the sampling which masks the form of the function under conditions 

where the data are aliased. 

errors  and show how they can grow t o  significant proportions. 

t h i s  leads t o  the conclusion tha t  unless specific assumptions are made 

regarding the spectral  content of the data, it is  meaningless t o  assign 

an experimental accuracy. We have chosen t o  consider only a scalar 

time ser ies  for  discussion even though magnetic f i e lds  are  vectors. 

Thus we can only estimate some model 

Finally, 

Certain other effects  can creep i n  when the vector f i e l d  i s  reconsti- 

tuted from the component measurements. However, we believe it is  

reasonable t o  assume tha t  the s i tuat ion cannot grow simpler. It is 

further assumed that system l inear i ty  is preserved throughout the 

data chain so that one can, with assurance, move reversibly from the 

time t o  the transform domain. i 

The theoret ical  treatment m u s t  a l so  be based upon the assumption 

that the spectrum of the data t o  be examined is  time stationary. 

- 

Other- 

wise, there is  no possibi l i ty  of analysis with the exception of slowly 

varying data t o  which trending theory applies. We make the assumption 



- 6 -  

that  sufficient data are available so that processing takes place over 

a time span sufficient t o  define the spectrum. 

that the most general representation of the function fo r  the time 

series contains both even and odd parts, though we sha l l  deviate from 

It is also assumed 

th i s  for spec ia3- purposes o f  illuslrat ion e 

3 .  TKE SPECTRAL DISTRIBUTION FUNCTION FOR COlvlBINED 

6 FUNCTION A H R ~  SAMPLING 

We discuss here the spectral distribution functiqn for  the case 

of conibined 6 function-aperture sampling. The discussion of the 

properties of the function which describes the distribution of tones 

is then followed by application t o  a hypothetical case, and the rect i -  

f ication offsets which are possible are  explored in de ta i l .  

Given a periodic sequence of 6 functions, 

g ( t )  = 6 ( t  - nT1) 
-W 

it is well known tha t  convolution of the transform of 

transform F(w), of a time series, f ( t ) ,  yields the spectral. replica- 

g ( t >  with the 

t ion [  racew we^ , 1963 ] 
W 

where 

over all orders of replicated spectra, ws = 21t/Tl, and 

interval between the sampling 'on times.f 

F(w) is the ensemble of spectral density distributions summed 

TL is  the time 
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When the function g ( t )  is  modulated or  interrupted by 

g( t )*  which blanks the sampling pulses in  the m e r  shown 

F(w) is generalized t o  [Sonett, 19621 

03 M 

a function 

It is observed that ,  i n  general, the function F is  a complex quantity 

for  any value of the argument. The complex nature of F derives, i n  

turn, from f ( t )  which quite generally contains both even and odd parts.  

The expression i n  equation 3 carr ies  the amplitudes and the original 

order of replicated spectra; i n  addition, it contains a satellite 

structure of spectra centered about each of the original members of the  

sequence generated fo r  the periodic case. The fast sampling period TL 

corresponds t o  the sampling rate given i n  equation 2; T2 is the period 

of the modulation, g(t)*; n 

given i n  equation 2; k is the satell i te multiplet order; T the son -  

t i m e '  for  g(t)*; ws = 23f/T1; wT = 21r/T2; and 

sents replication of the original data spectrum a t  order n,k. There 

exists a double inf in i ty  of spectra corresponding t o  the extension of 

the single inf in i ty  given i n  equation 2. The factor preceding F is 

the amplitude modulation t o  be applied t o  a particular order The 

highest amplitude spectra obtained are governed by the factor 

l/Tx(T/Tz).  

changed, the amplitude of the maximm (k = 0) spectra various accord- 

ingly. The number n denotes the  spectral  order of the terms given 

for simple periodic s q l i n g  (equation 2), and k denotes the satelUte 

is the order of the primary spectra as 

F(w - nws - k w T )  repre- 

k .  

Thus, as the duty cycle of the comutation (7/T2) i s  
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spectral order for each n e  The amplitudes of the spectra are, 

therefore, modulated according t o  the order number, k. 

The generation of the function,whose spectrum F(w) is displayed 

i n  equation 3 ,  is i l lus t ra ted  in  Figure 1 which shows the three func- 

seriee, Figure 2 show the tones fame8 

from the switching functions alone. 

tones can be regarded as due t o  a beat phenomenon between the f a s t  and 

The generation of the subsidiary 

slow rates  i n  a l l  order of spectra. The last step in  the construction 

consists in using the switching functions f o r  sampling a r ea l  time 

series.  Then replications of the o r i g h a l  data spectrum are  gener- 

ated about each of the l ines  of the switching tones. Equation 3 corre- 

sponds t o  an extension t o  higher order of the usual concept of spectral 

folding or alias. The important dist inction is that for the extended 

case, the relevant Nyquist l i m i t  required t o  guarantee no spectral 

folding is determined by T2 rather than T1. The character of the 

folding is determined by the duty cycle, T/T2, and the spectral dis- 

tr ibution function, F(w) e Equation 3 shows tha t  secondary lobes a re  

present as  determined by the modulation envelope. 

In order t o  express the meaning of equation 3 in a physical 

manner, consider the following restr ic ted problem. Given a spectral 

distribution, then 

Nyquist l i m i t  imposed by T1. The band extends from zero t o  one-half 

the frequency of the dominant l ine ,  n = 1, which is  recognized as the 

first-order switch tone for  the simple periodic sampling with period 

T1. 

F(w), as before, i s  band limited t o  sa t i s fy  the 

We now res t r i c t  consideration t o  the first lobe of the modulation 

function sin x/x where x = m/Tz. As an example we shall take, a duty 
2 
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cycle w i t h  commensurate periods where 

of s in  x/x for  k = 4, 8, . . . . Thus these spectral l i nes  are  

suppressed. (For particular values of Tw, the vectors are equally 

dense i n  phase and the spectrum is suppressed. 

T/T2 =" 0.25 which gives zeros 

For t h i s  reason, 

certain switching tones do not occur i n  the generation of the t o t a l  

switching spectrum. ) 

The spectral l ines  examined here and upon which the data spectral 

function, F ( w ) ,  i s  replicated are  given by n = 0, -3 < k < 3 for  the 

zeroth order of n. 

associated with n = 1. A l i t t l e  reflection shows t&t these contri- 

butions are associated w i t h  n = 1, k = -3, -2, -1. There are conse- 

P P  

There w i l l  be some contribution from spectra 

quently a grand t o t a l  of ten overlapping spectra counting only first 

lobe contributions. Those in  the negative frequency domain are  folded 

about zero and therefore are  degenerate; the t o t a l  measured count 

becomes seven. The complete spectral density which is  measured is 

due t o  the composite values arrived a t  from summing these members. 

The various spectra are  shown i n  Figure-3 in  exploded form f o r  c lar i ty .  

A l l  members have an equal span i n  frequency; however, the amplitudes 

are governed by the mdulation, s in  x/x. The t o t a l  spectral intensity 

is  arrived a t  from graphically adding the contributions from the various 

spectra or  alternatively summing equation 3. 

7/T2 =" 0.25, the spectral density amplitme distribution is given by 

For the case cited, 
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2 
where a l l  but the first t e r m  are alias contributions. -!?he remarkable 

form of equation 3 and the diagram of Figure 3 are strongly re.?niniscent 

of diffract ion theory. To workers i n  that f ie ld ,  it is immediately 

evident that the sampling procedure being discussed here has a transform 

which is  ident ical  t o  the space pattern of diffract ion established 

through a s l i t  whose aperture corresponds t o  the gate function, g*(t>> 

followed by a uniform grating. 

It is  clear  from inspection of equation 3 how increasing the sampling 

interval can decrease the alias. Consider the  case where data are 

sampled at  a high rate fo r  an extended period of time but w i t h  preserva- 

t ion of the duty cycle c i ted.  Since T2 is  long, the subsidiary 

spectra w i l l  converge and the first zero of 

quickly. 

s i n  x/x will be achieved 

If the t rue  data spectrum has important high frequency com- 

ponents, the data bandwidth w i l l  tend t o  be large compared t o  the width 

of the first lobe of the modulation function, s i n  x/x. 

fractional error  i n  the proper position of an interval  from a secondary 

spectrum w i l l  decrease, and the spectrum w i l l  appear t o  approach s t r i c t  

Therefore, the 

superposition. In short, the switch tones from T l  will tend t o  

coalesce about the central  terms n = 1, k = 0. This is the basis  of 

“Equation 4 tacit ly ignores phase f o r  the sake of simplicity and 

assumes a l l  contributions are purely real (see section 5 )  
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the intuit ive conclusion that a commutated time series with very long 

'on time' can effectively generate a 

having serious folding problems. An 

samples for  one day every other day. 

The generalization of the usual 

useful spectrum without necessarily 

example would be a data link that 

alias problem expressed for  periodic 

sampling is commonplace because of the use of commutation or  time 

sharing in s a t e l l i t e  data transmission. 

subsequent buffering pr ior  t o  time'sharing, the alias problem is greatly 

complicated and cannot be sat isfactor i ly  resolved i f  the N y q u i s t  l i m i t  

for the lower frequency, g(t)*,  has not been observed in the presample 

f i l t e r ing  operat ion. 

1 

Without periodic sampling and 

4. ARITHMETIC AVERAC;ING OF TKE FAST SAMPLES 

Examination of the form of the spectral distribution function 

discloses that reduction of the order of the a l i a s  might be entertained 

by a procedure which can be described simply as burst averaging the 

'on-time'data. 

l a r  weighting function, equivalent t o  numerical f i l t e r ing  with a 

s in  x/x transfer function. 

running averpge and therefore the bandwidth, a lbe i t  aliased, i s  deter- 

This corresponds t o  convolving the data w i t h  a rectangu- 

However, the process does not produce a 

mined by the interaveraging time, T2- 

as follows. The interrupted function g ( t )  is constituted of bursts 

of deltas, each having j members; therefore, 

We can represent the operation 
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where T is  the interval between the fast occurring pulses, j is the 

order number i n  the subsequence of fast pulses, n is the order of the 

pulse group counted over a time interval, T2, where is the period 

associated w i t h  the repetition of a pulse subsequence. 

T2 

W e  reorder 

eqa t ion  5 by 

The reordered 

each of which 

reordering is 

the companion 

assenibling all pulses having the same index, j. Therefore, 

g(t)-g(t)* = , 6(t - ¶.T - nTd 
q=o n=-co 

sequence is t o  be understood as a f in i tk  set  of sequences, 

has a s t r i c t l y  periodic time of T,. The procedure for 

shown diagramed in  Figure 4. 

transforms in the frequency domain are represented by 

From the shift ing theorem, 

It is  apparent that one can operate either i n  the time or  frequency 

domain i n  order t o  shif t  the spectra into s t r i c t  superposition. 

the time domin, the sample pulses i n  the sampling interval when 

g( t )*  = 1 are inversion delayed w i t h  the first sample delayed,by 37. 

The last pulse is  given zero delay and, i n  general, the delay w i l l  be 

given by q& The delay must be denumerable, and i n  the process out- 

In 

lined, the processing is  - a posteriori .  In the frequency domain, the 

equivalent operation as indicated from equation 7 is t o  apply a l inear  

phase sh i f t  with frequency of the amount iqTWe 

The previous discussion is  the lnathempAical description of w h a t  can 

nearly be made t o  be simple arithmetic averaging. From the spectral 
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standpoint, however, it is well t o  point out tha t  the Fourier coefficients 

f o r  each of the samples a re  complex and that it is  the process of time 

o r  phase shift ing which rotates these into the real axis so tha t  simple 

addition can be performed. 

Consideration of the process just described indicates a f l a w  i n  its 

application since it has not been stated that the presampled data has 

been properly Nyquist limited. To do t h i s  requires that the high fre- 

quencies be removed. When t h i s  is done and only those frequencies remain 

which properly observe the Nyquist l i m i t  for the low frequency switching, 

%he averaging process can be said t o  have been carried out i n  an 

int r insic  manner by the analog f i l t e r .  I n  short, averaging or  what is 

equivalent, the application of a weighting function, can only be carried 

out in the instance considered prior t o  the sampling operation. 

done a f t e r  sampling a t  the fast ra te  the high frequency alias is 

permanently imbedded i n  the data. 

When 

The fallacy in  t h i s  approach when the proper Nyquist frequency is 

observed l i e s .  i n  the lavish and nonoptimum use of bandwidth, i .e  , 
there is no point in  sampling faster than a t  a ra te  allowed by the 

Nyquist l i m i t  

Phase information is not carried expl ic i t ly  i n  equation 3.  To com- 

pute folding errors it is necessary t o  view F(W) as a complex vector 

'An exception t o  t h i s  would require ut i l izat ion of the complicated 

weighting function described ear l ie r  with its potentially disadvantageous 

character ist  2cs e 

i 
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or else  i n i t i a l l y  r e s t r i c t  computation t o  rms sum6 of spectral s t r ip  

which contribute t o  some spectral region, say w 0. 

To examine phase information, the time function f ( t )  is separated 

so that 

where fe( t )  = fe(-t) and -t) being, respectively, the even 

and odd parts. We take f ( t )  t o  be r ea l  and thus the Fourier transform 

is Hermitian; i.e.,  the r ea l  part i s  even and the imaginary part  odd. 

Thus if  the transform of f ( t )  is G(w) = x ( w )  + icp(w) 
- \  

and 

The transform of the sampled function (equation 3) is  expressed as 

and it follows that  the terms sought about the origin are given by 

It follows further fromthe above arguments using the properties of the 

shift ing theorem that the phase at  the origin is given by 



The requirement that  a l l  a l iases  disappear is given by I 

Each of the spectral replications generated carry $he sfme phase as 

the original function,’F(w). 

sh i f t  e according t o  equation 7. Thus the phase function f o r  a 

To the phase functions must be added the 
i q w  

particular replication is given by 

where 

and qwT is the contribution from sample lag time. A t  w = 0, qwT --* 0 

f o r  any spectral replication. 

form fo r  

However, without the complete complex 

F(w), one cannot hope t o  resurrect the correct dc f i e ld  

values when the folding overlaps w = 0. 

Rectification and demodulation error estimates. The process whereby 

a nonzero spectral contribution is shifted down t o  zero frequency is 

exactly equivalent t o  the operation of demodulation o r  rect i f icat ion 

and is  tantamount t o  the conventional operation of demodulation of com- 

munication practice. Any folding operation which carries w 0 is a 

contributor t o  the rect i f icat ion process whether it ar ises  from sampling 

o r  from another effect ,  such as spin modulation folding. Thus9 i n  

general, it is possible t o  envision several means of making contribu- 

t ions which are assembled in the  neighborhood of the origin and which 

I I 
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have arisen from different portions of the original spectrum. 

equation 4, the absolute errors both for  the r e a  and imaginary parts 

Using 

of the spectrum i n  the neighborhood of the origin and due t o  the folded 

contributions are  

Assume nbw for  computational purposes a l inear  ramp of the form 

where a is taken as unity and b = 1 for w& = (fl/Tx) e The t a c i t  

assumption i s  that F(w) is  rea l  everywhere making f ( t )  Hermitian. 

Other possibi l i t ies  exis t  and are perhaps more r ea l i s t i ce  However, 

fo r  our i l lus t ra t ive  case, simplicity dictates  the choice made. This 

l i e s  somewhere between a maximum and minimum possible se t  of errors. 

The worst case would be when either 

the spectral contributions were summed arithmetically. 

5 or g were zero everywhere and 

A minimum 

exis ts  when the conditions given by equation l2 are  6atisSied and all, 

t 
i folded contributions sum t o  zero. 
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In our example we attempt t o  strike a mean by making a l l  Fourier 

components real but t o  rms the  sum. 

Table 1 is  a compilation of errors  for  the  l inear  ramp and rms sum- 

ming with variable bandwidth spectra characterized by values normalized 

Lo CI = 1 $or w = ~c/Tx, the original  B 

is  seen that the errors'grow rapidly as the bandwidth of the data spec- 

trum is increased as would be expected upon heuris t ic  grounds. 

the assumption of errors smaller than about 10% means tha t  the spectrum 

should be assumed t o  become insignificant beyond one-half the  comuta- 

t ion frequency. The calculation assumes zero contribution from the 

minor lobes of n = 1 and from higher order terms, i . e e P  n = 2 

That th i s  underestimates our simple computation is  seen from the 

divergence which would exis t  i f  an essentially f la t  spectrum were 

ALSO, 

taken. In that case, the limiting parameters would possibly be the  

t rue quadrature component of the spectrum together with the f i n i t e  

width of the de l ta  function sampler which would cause the contributions 

t o  be cut off eventually. 

able 1 t The assumption that n(w) = 0 everywhere is equivalent t o  

fo(t) = 0 for a l l  

indirectly by the rms procedure. 

computation m u s t  question the assumption that 

t .  The computation invokes the phase shif t ,  qwT, 

This seems reasonable; a more exact 

F(w) = 0. Cases w i l l  

a r i s e  where the phases of a l l  folded contributions cancel at  w = 0. 

More specifically, large errors that cannot be ignored are predicted 

for  the heavily aliased situations as our sample calculation of r m s  

error  illustrates. 
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6 DISCUSSION 

Analysis of the multirate problem progresses most easi ly  

i n  the frequency domain; it is more d i f f icu l t  t o  give a comfortable 

physical picture of the way i n  which the folding of spectral coqonents 

can cause errors in  the f i n a l  values of the parameters sought. The phe- 

nomenon of multirate folding, when transformed t o  the time domain,becomes 

one of the loss  of certain components i n  the spectrum. Besides the 

ear l ie r  observations, t h i s  means that beat notes between tones can be 

hidden. 

tinuum; therefore, beating or mixing of tones becomes a very complicated 

The analogy is complicated for we deal w i t h  a spectral con- 

procesq. 

1/4, it is  reasonable t o  expect that  mixing could be subjectively l o s t .  

This means9 in turn, that amplitudes of the ?one time' data although 

carrying instantaneous information, provide erroneous summaries over 

longer times, since ei ther  nodes or maxima could be sampled and there is 

Nevertheless, since for  the example chosen the duty cycle is  

no way t o  distinguish the t w o  cases. The complication of discussing the 

higher order a l i a s  problem in  the time domain is  brought out in the tex t  

and no more can be done but t o  give an intuit ive guide for  the results 

of the spectral folding as they will take place in  the time ser ies  which 

is  returned by the spacecraft. 

return t o  the spectral domain according t o  the ear l ie r  arguments. 

is clear that fromthe most fundamental standpoint it is impossible not 

t o  have the spectral folding issue carry over into the time domain through 

the process of inverse Fourier transforntation. Lastly it becomes clear 

how any high frequencies present i n  the time series. could be the resul t  

For quantitative examination, we must 

It 
\ 
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of ,  o r  modified by a beat or  resonance phenomenon according t o  the 

folding of the spectra. 

t ion violates the fundamental theorem of sampling. 

of the mean f i e ld  and/or of the variance in the f ie ld  are subject t o  the 

risk that long period waves having a broad span of frequencies can beat 

together t o  produce a r t i f i c i a l l y  high or low values of the measured com- 

ponents, depending upon the particular character of the spectra. 

Any attempt t o  circumvent the folding restr ic-  

In short, measures 

An additional comment sometimes made is  that instantaneous f i e ld  

values are more suitable f o r  geophysical study than wben f i l t e red  t o  

sa t i s fy  the Nyquist cri terion. Fask'sampled short dqta burst which ' 

exceed the bandwidth allowed by the sample period haae l i t t l e  physical 

relevance unless the spectrum can be shown t o  be free of alias-prone 

components. 11 In that  case there is no point in  Super-Nyquist'' sampling.. 

The point is sometimes raised that d i f f icu l t ies  which might occur 

in the spectral domain are  not necessarily reflected in the time domain 

where, f o r  the case cited, the data have the form of an interrupted time 

series.  We believe that  t h i s  objection stands corrected. Although 

spectra& infarmation as usually presented lacks phase since the moduli 

of the complex Fourier coefficients alone are given (as in  power spectra), 

t h i s  representation nevertheless provides a powerful means of understand- 

ing geophysieal data. 

the Q of a resonance from time series alone. Another example l i e s  i n  

For example, it would be d i f f icu l t  t o  determine 

the cascading of eddys in the decay of turbulence. It would take con- 

siderable endeavor t o  attempt a meaningful fornulation of this  problem 

w i t h  recourse only t o  the time domain. 
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It is clear that the optimum bandwidth for sampled data occurs most 

simply fo r  periodic sampling. Therefore, in commutation a l l  experiment 

l ines  should be evenly interlaced so that burst transmission is  not used. 

The alternative,  sometimes employed, is  t o  sample a t  a periodic rate and 

%bly wb%h %he oomu%a%ea 

telemeter. 

ab i l i ty .  

ing commensurate w i t h  the commutation rate,  and therefore, some decrease 

However, t h i s  is  expensive i n  c i rcu i t  complexity and reli- 

Also it i s  not always possible t o  make the sampling and buffer- 

of bandwidth fromthe optimum may be necessary so as $0 observe the 

N y q u i s t  l im i t .  
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Normalized ramp rms folding error, 
cutoff, u0 = g/T= k 

0.25 0 

0.50 9 

0.75 18 , 

1 .oo 25 

2 .oo 37 

4 .OO >200 

Fractional error in  the neighborhood of 

w = 0 due t o  folded contributions. The 

frequency is normalized t o  

A 

G* = 1 a t  z/T. 

This value is computed solely from terms * 

where n = 0. The correct value would 

include contributions from n = 1 and the 

error would be higher. 

I 
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FIGURE TITLES 

Fig. 1.- The three functions which form the complete sampled time series. 

The original data are given by f ( t ) ,  the initial time series,  g ( t )  is 

the fas t  sampling sequence of del ta  functions, and g*(t) is  the modu- 

la t ion or commutation which switches g ( t ) .  

Fig. 2.- The spectrum of sa tch ing  tones generated by g ( t )  and g*(t) 

The primary order, n, corresponds t o  the high sampling rate of g ( t )  

while the subsidiary spectra are  identified by the order k. The 

case shown is  f o r  a duty cycle of 0.25 which has zeros for  

k = 4, 8, 12, . . . This case is  discussed at  length i n  the tex t .  

Each of the switch tones forms the axis for  a replication of the data 

spectrum., These overlapped spectra are not shown here. The original 

Nyquist l i m i t  given by the fast ra te  sampling corresponds t o  band 

limiting a t  the first zero, tha t  is, n = 0, k = 4. 

Fig. 3 . -  The spectrum of switching tones generated by g ( t )  and g*(t) .  

The case shown is  for 

spectra, k = 1, 

not include the negative (n = 0, k = -1, -2, -3) folded terms. 

n = 0 and a duty cycle of 0.25. The subsidiary 

e ,  are shown up t o  the f i r s t  zero, k = 4 and do 

The 

original Nyquist l i m i t  given by the fast rate sampling corresponds t o  

:, band limiting a t  the first zero, that  is, n = 0, k = 4. The indicated 

amplitudes a t  

according t o  equation 4 t o  obtain the contribution of each folded 

spectrum a t  w = 0. 

w = 0 are  t o  be multiplied by F(w - ws f nuT) 

i 
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Fig. 4.- A simplified view of the reordering of the sampling de l ta  

functions fo r  an interrupted g ( t ) ,  that  is, with g*(t) modulation. 

Here we ignore the modulation in  the sense discussed ear l ie r  and 

merely reorder the interrupted sequence into periodic sets of 

period Tz. This allows the process of secondary spectral  generation 

t o  be displayed from the standpoint of complex Fourier coefficients 

as shown in  the tex t .  

I 










